Integrating Perl in a wider distribution: The Debian pkg-perl
group

Gunnar Wolf
Instituto de Investigaciones Econémicas — UNAM
Debian Project Developer

August 21, 2007

Abstract

Perl modules are very well organized in CPAN: They
can usually be easily found and, thanks to tools such
as the CPAN shell, they are easy to install and up-
date even by novice users. However, when people
start using Perl systems (as opposed to using Perl for
writing such systems), asking them to take care of
the dependencies or having them worry about differ-
ent distribution architectures is a pain that should be
spared from them.

In my talk, I will describe how Debian [Debian]
(and other Free Software distributions) addresses this
problem by packaging a large subset of the CPAN
archive, what is the task and scope of Debian pkg-
perl [pkg-perl] team, some of the tools we use - and,
most importantly, what is the best way for us to in-
teract with you, the upstream authors’ community —
regarding our bug tracking systems, regarding mod-
ule building and dependencies information, etc.

1 Who and why?

1.1 Who am I?

This article was originally written by Gunnar Wolf
<gwolf@debian.org> to be presented at YAPC::EU
2007 [YAPC:EU], with the spirit of being able to
spark interest and further comments both from the
Perl and the Debian communities, hoping to inter-
act better and provide a simpler and more consistent

experience for our users, at all experience levels.

I have been a Perl programmer for almost ten
years already, and although I am far from consid-
ering myself an expert, I have presented talks both
in YAPC::NA 2001 and YAPC::EU 2002. I maintain
two (small, simple and low maintenance) CPAN mod-
ules, and although I have been lured towards differnt
languages and ways of working, my mother tongue as
far as programming languages are concerned is still
(and will probably always be) Perl.

By 2001 I also started getting involved in Debian,
and since 2003 I am officially a Debian Developer as
well. My main work area in Debian is in the pkg-perl
group, and I have recently started getting involved
with the pkg-ruby-extras group, which has similar
goals, although it is targetted at the Ruby language.

1.1.1 Why am I presenting this? And why

here?

Every programmer wants their work to be useful —
Or at the very least, to be used. In the Free Soft-
ware world, one of Perl’s most successful ecological
niches, the best way for our work to reach the users
is to get integrated in a major distribution (Refer to
section 3.2 for a more complete explanation on the
distributions, their goals and ways to achieve them)

To be honest, I expect giving this talk will almost
be like preaching to the choir — At Debian, we have
almost had no problems working closely together with
the Perl developer community. Some of the tools
that sparked the pkg-perl’s efforts were even based

on work by prominent members of the Perl commu-
nity [Brocard]. I must thank you all: The Perl com-
munity is a charm to work with. I think the main
reason for it is that it is a mature community, that
mostly clearly evolved from Unix users and admin-
istrators — people clearly compatible with Debian’s
way of working.

My aim with this talk is to present to the Perl
community the work we do at Debian, in order to get
input on how to better work together, and of course,
to share experiences and points of view with other
distributions’ packaging teams.

1.1.2 Are we really that similar?

There are some other coincidences to this, although
I don’t know if there is any deeper sociological rea-
son for both communities to work in such a similar
fashion.

First, Perl modules are often excellently docu-
mented. Although documenting is —fortunately—
often seen as a very important value among Free Soft-
ware developers, it is often left to the end of the de-
velopment cycle, or covered hastily just so nobody
complains. Debian’s policies, however, state that the
lack of documentation is considered a severe bug,
enough to block a package from entering its stable
releases. With Perl modules, this is seldom a prob-
lem — Contrary to some other language communities
(think Ruby, PHP) which stress more the agile way,
where documenting falls out of favor because it en-
courages not spending so much time in the design
phase, as posterior iterations will probably change
the base behavior of the system. In CPAN, even the
least maintained modules have basic documentation
available.

Second, the Perl community has gone past the
rapid development stage where the community re-
quires every component to be up to the latest mi-
nor version. The Perl community values dearly sup-
porting older versions, not hastily deprecating func-
tionality as soon as new ways are developed. Perl,
just as Debian, has been blamed for stagnating — A
claim often made, of course, by people who don’t see
the technical excellence behind, and who don’t value
long-term stability and predictability.

Many of the thousands of modules available in
CPAN 2.1 have stabilized in providing the function-
ality they intended, and can often spend many years
without being modified — This does not mean they
are abandoned (bugs are usually dealt with promptly
by the authors), but that they are stable and solid.

2 CPAN background

One of Perl’s longest standing selling points is CPAN.
It is probably the largest repository of this kind in
the Free Software world, and an immense source of
resources for its programmers.

2.1 In the beginning, there

CPAN, and it was good

The Comprehensive Perl Archive Network [CPAN] is
the prime resource for a Perl programmer. It has
been online since October 1995, and as of May 2007,
it hosts 11577 modules from 5856 distinct authors
[CPAN Modules, CPAN Authors|. Not even that, it
is also a fast-growing and fast-evolving list: During
10 days in May, the total number of modules grew
by 76. Every day, there are over 20 new uploads
[CPAN Recent].

CPAN is, in no small part, responsible for Perl’s
success: Besides being a very enjoyable and powerful
language to develop with, but it has a tremendous
number of proven, categorized modules to ease an
individual programmer’s task.

An important feature of CPAN is that it is a cen-
tralized repository, which allows us to treat it as a
single entity and perform operations throughout the
module base. A homogenous quality among CPAN
modules is far from reality, but there is a base num-
ber of features CPAN’s modules have! — Standard-
ized module layout, common build systems, decent
test coverage, a centralized bug tracking system (to
which the module developers do tend to pay atten-
tion)... In short, the Perl community is probably the
easiest to integrate with Debian, as explained here
and in section 1.1.2, both technically and socially.

was

1Feel free to just prepend an “almost” to the beginning of
each assertion I make

2.2 And then, there is CPAN.pm

Although originally just the fact of having a central-
ized repository was good enough, very soon modules
started becoming complex and depending on each
other (even worse: On specific versions of each other)
— After all, that’s what code reuse is all about, right?
Well, yes, but life for CPAN’s users started deteri-
orating — Installing a module no longer was mat-
ter of downloading a tarball and going through the
proven perl Makefile.PL && make && make test
&& make install cycle. And as CPAN started grow-
ing, it would only get worse.

It took very little to reach this point. By Febru-
ary 1996, Andreas Konig had realized this could only
be solved by providing an infrastructure for modules
to declare their cross-dependencies — and, more im-
portant, for a client program to solve them on behalf
of the user. Thus CPAN.pm [CPAN.pm| was born.
This module provides the user with an infrastructure
for installing and keeping up to date all the mod-
ules registered in CPAN. For practical purposes, this
solves the problem.

In 2001, Jos Boumans started working on CPAN-
PLUS (also known as CPAN++) [CPANPLUS]|, a
redesign on CPAN which aimed at modularizing all
of CPAN’s processes so it could be not only used as a
tool, but as a library. For some time, CPANPLUS
was seen as a natural replacement for CPAN.pm
when it became ready — However, by now most of
this work has been integrated into CPAN.pm, which
is much more heavily rooted in the Perl community.
Anyway, we will not go deeper into it. For this ar-
ticle’s purpose, it’s enough to state that both sys-
tems are an adequate answer for the Perl’s commu-
nity needs on managing installation, updates and de-
pendency information between modules.

3 Integration with distributions

Although Perl is a highly portable beast, running in
every kind of environment, it is most pervasive in the
Free Software distributions — specially in the Linux-

based ones?.

3.1 The bigger picture: End users’ ex-

periences

The solution presented in the previous section is,
however, a bit lacking in the end. It solves the prob-
lem perfectly for Perl’s most intensive users, the pro-
grammers who often install all kinds of modules, find-
ing the best ones to suit their needs for each problem
at hand, and —of course— those making up the tar-
get audience of this article.

End users are, however, a completely different
story.

We often develop complex Perl systems to be in-
stalled by people who don’t really have knowledge
of the Perl community’s tools and processes. Ide-
ally, our systems’ users will not even care what lan-
guage the system was developed in, and will never
get familiar with its carefully crafted tools. They
are just interested in the implemented functionality.
And the same story goes for other laguages — I could
have written section 2.2 referring to PHP’s PEAR or
Ruby’s Gems [PEAR, Gems]. Python has the Python
Cheese Shop [PCS], which is only the repository, but
does not include an infrastructure for installing, up-
dating and dependency handling.

This seems to be good for Perl, PHP and Ruby —
And it is a great value for their respective developer
communities. However, it can become a nightmare
for the end users. As I have just stated, our systems’
users should not even care what language a system
was developed in —- Even if many Perl people feel
that having the user call CPAN.pm as a clever advo-
cacy trick, language advocacy should not be targetted
at end users [Cross|. Leaving aside whether language
advocacy should be carried out in non-programmer
circles, the problem is having each language support
its own packaging infrastructure and idiosincracy is
Just too complicated for most end users.

2As of today, besides Linux, the most widespread Free
Software-based operating systems are FreeBSD, OpenBSD,
NetBSD, Sun’s OpenSolaris and Apple’s Darwin (the lower
half of MacOS X). All of them include Perl as part of their
available packages, and most of them do so as part of their
core installation.

To put this in other words: Our job at Debian
is to make installing whatever Free Software a user
wants as simple as just typing aptitude install
package_name® — All dependencies (and, as far as
we can provide, all of the installation instructions)
should be immetiately and automatically taken care
of.

3.2 Free Software distributions: Dif-

ferent support tiers

One of the main reasons for Free Software distribu-
tions to exist is to provide users (and specially end
users) with a coherent, unified system, easier to keep
track of, to integrate and to keep properly working.
Debian is not only the largest distribution, includ-
ing over 15,000 source packages, but quite probably
is also the one with the most strict policies regard-
ing quality assurance and software freedom. While
the project I work for is Debian, most of what will
be discussed in this section applies to all other Free
Software distributions as well.

When something goes wrong, end users will usu-
ally file a bug report through the Debian BTS, to
their package maintainer* in Debian. Sometimes the
bugs are filed against the wrong package, or a partic-
ular user’s request is not precisely a bug report but a
wishlist request, or even a misunderstanding on how
the package is supposed to be used — The package
maintainer should take care of finding which package
it actually refers to. The bug might be caused or trig-
gered by packaging mistakes or conflicts, so it should
be fixed without bothering the upstream developerS.
The package maintainer should only push the report
upstream (and, of course, contribute to finding its
solution) if it applies to the original developers’ code.

The distributions’ structure acts, then, as a first

30r the point-and-click equivalent for the GUI-minded peo-
ple (which means, most of the end users, to be honest) via tools
like Synaptic

4The person or team that take responsability for a given
piece of code. Package maintainers’ job is to ensure the pro-
gram is well integrated with the rest of the packages in the
distribution, up to date and, in general, to make sure that the
package complies with Debian’s policy.

5 As you might imagine, upstream developer is the term we
use to designate the real authors of a package we maintain.

safety net, trying not only to make life easier and
more manageable for its users, but also to help the
upstream developers not be as busy as they otherwise
would if they had to deal directly with users’ requests.

3.2.1 The other way around: Perl supporting

the Linux distributions

The reverse workflow might be also interesting for
many modules’ authors — How can you track your
modules across the many different existing Linux
distributions, helping their maintainers know when
there are new versions available, probably including
important fixes? If you change your modules’ APT or
reorganize it in several submodules, what is the best
way to notify them before bugs get filed? How does
each distribution stand up regarding Perl and CPAN
up-to-dateness and completeness?

Answering to these questions has proven a hard
problem. Each distribution has different policies
and ways of working with and presenting this in-
formation. The official CPAN ports page’s section
[Linux tracking] basically gave up on tracking Linux
distributions in 2004, and it is frankly misleading to
newcomers.

Gabor Szabo gathered a list of CPAN modules,
checking for their presence and versions in several
distributions and collections [Szabo]. From a quick
glance, it is reasonably up to date (although it is cler-
aly not generated on a daily or even weekly basis).
This list is, of course, very useful and welcome for the
purposes of this section — however, even when the
distributions offer centralized tracking of the mod-
ules they package and offer to the users, operations
apparently as trivial as following the packaged mod-
ules’ version numbers is an interesting problem, as
explained by Ricardo Signes[Signes]. Each distribu-
tion has different rules for interpreting the version-
ing® (with, of course, their own and very valid rea-

6Even going beyond what’s programatically parseable, dis-
tributions don’t always have a coherent way of translating the
module names themselves — sometimes out of historic reasons,
sometimes for technical reasons, sometimes for the distribu-
tion’s policy {or lack of). CPAN bundles might be unbundled,
or small but related modules might be bundled up together...
But that topic, I believe, goes very quickly out of this paper’s
scope.

soning on why semantics are presented that way), and
you might have to jump through hoops to get them
correctly ordered.

3.2.2 A word about propietary systems

Of course, not everybody can use a free operating sys-
tem such as Linux or the BSDs. For reasons many of
us just cannot understand, some people even want to
work with closed operating systems such as Microsoft
Windows, MacOS X, or the historic Unixes.

Of course, propietary operating systems don’t (and
quite probably won’t) offer this first level of support
(certainly not outside their core components). For
people using those systems, the best way out is to
stick to the wonderful tools that have been created by
the different communities. Nothing will cut the Perl
cheese in Windows as the CPAN shell does, Solaris”
will be a lonely place for PHP if you don’t use PEAR,
and developing Ruby on MacOS® without Gems will
surely hurt.

My deepest sympathy to you guys.

4 Debian’s pkg-perl group

4.1 How Debian

works

maintainership

Besides being a Linux distribution, Debian is a social
project. Some like to define Debian as an ongoing ex-
periment on a completely voluntary and (sometimes
extremely) equalitarian organization. Debian is an
organization of around 1000 official developers®, all
of them with the same rights regarding the project

"Yes, T know the nice guys at Sun Microsystems take pride
at pointing out that OpenSolaris is truly free. It is, for most
practical purposes. Solaris is, however, structurally still a his-
torical, propietary-style Unix throughout. There is work un-
derway to make installing and administering an OpenSolaris
less daunting for people used to the Free Software way, and I
truly hope we can soon install a free, robust and manageable
OpenSolaris system. Still, as of today, it has a long way to
learn about usability from the major Linux distributions.

8A similar note to 7 geared at Apple’s strange Dar-
win/MacOS X combination.

9Plus several hundreds of unofficial developers, some of
them working their way to become official, some of them just
taking care of the bits they are interested in.

(which are, basically, getting a fancy @debian.org
email address, being able to directly upload software
to our unstable and experimental branches and be-
ing able to vote on the project’s general resolutions).
Each developer is responsible for the packages he/she
maintains. For a long time, of course, several core in-
frastructure parts of the project have been developed
and taken care of by groups of developers — But be-
fore 2004, group-maintainership was mostly limited
to the areas that most obviously required it.

However, being a volunteer-run project, Debian
has faced both the joys and the problems that stem
straight out of its altruistic identity. ~The main
problem we face is that, naturally, developers end
up losing interest for the tasks they originally took
on. Over the years, the Quality Assurance Team
[Debian-QA] grew and wrote several tools to track
the undermaintained packages and the maintainers
that seem to be losing their steam. Their goal was,
of course, to keep Debian’s quality high — people are
free to leave whenever they want to, but the project
should not suffer because of it. Searches for MIA?
developers following different strategies have been
carried out at least since 2003 [Michlmayr, Troup],
and they keep being refined today [Jaspert]. But
maintainers should be interested in acting proactively
— Many people in Debian, me included, see group
maintainership, even for low-profile packages, as one
of the best ways to prevent a demotivated maintainer
from ending up becoming a liability to the whole
project. If packages don’t have only a single respon-
sable person, they are much less prone to become
undermaintained.

4.2 The pkg-perl group

In late 2003, a group of Debian Developers maintain-
ing several Perl modules started coordinating in the
debian-perl@lists.debian.org mailing list. By
the beginning of 2004, Joachim Breitner sent out an
announcement [pkg-perl started] inviting developers
to join in a coordinated effort. Quoting his announce-
ment,

10Missing In Action — What, aren’t we all fighting the same
war?

At November 17th, a discussion about a
common problem for Debian Perl developers
was started on debian-perl@lists.debian.org.
Most developers often realize that modules
available on CPAN are not included in the
Debian archive. This hinders the packaging
of Perl applications and other modules.

After discarding the idea of automati-
cally dumping all CPAN modules into the
Debian archive, a collective effort to im-
prove the packaging of Perl modules in De-
bian was proposed. This consists of creating
new packages of needed Modules as well as
of bugfixing and updating existing packages.

This seems to be necessary, as even
many of the Perl modules included in the
unstable distribution of Debian are out-
dated.

These thoughts lead to the founding of
the Debian Perl Group, defined through the
following goals:

e Adopt orphaned Perl module packages.
e Handle the RFP of Perl modules.

e Document and improve the usage of
tools like dh-make-perl.

e Help with bugs in Perl packages.

e Keeping Perl packages in the Debian
archive as up-to-date as possible.

I want to stress his second paragraph — Quite early
in the process, we decided that, although we wanted
to offer as much of CPAN as we could properly pack-
aged for the Debian users, we did not want to blindly
package all of CPAN. The whole point of having a
distribution with formal QA processes is to have hu-
mans overseeing the process, ensuring the modules
are buildable and usable at all times — And, very
important, that all packages that form the stable dis-
tribution behave well with each other. During the de-
velopment cycle, it is common for a module to change
its API or to subtly break a dependency chain; some
of the CPAN modules are basically proofs of con-
cept or so domain specific they are used by just a
small number of users, so although it was actually

suggested, just blindly repackaging all of CPAN to fit
the Debian structure, in short, never seriously worked
on.

For our day-to-day operation, the pkg-perl group
organizes and shares its work through a public SVN
repository [pkg-perl SVN] where we keep the modules
we package as well as the tools we use.

4.2.1 Current pkg-perl numbers and tools

As of today, the pkg-perl group is responsible for
327 packages [pkg-perl packages|, out of 1303 that
are part of the unstable branch — around one fourth
of Debian’s perl packages have been adopted by the
group. Although there are formally almost 50 mem-
bers in the group [pkg-perl], the number of active
members is probably closer to 10. And, even though
we are not free of bugs, the count is quite low given
the amount of packages maintained — As of July 19,
2007, we have a total of 61 open bugs, only two of
which are of release-critical priority. Out of the to-
tal 61 bugs, 8 are reported against the Mime-tools
package, and most of those are tagged as upstream’s
decision.

4.2.2 DEHS: Keeping track of upstream ver-
sions

Of course, as part of the group’s work is to track up-
stream development and keep Debian as up-to-date
as possible regarding the CPAN modules, we heavily
rely on the DEHS [DEHS]. All of our packages in-
clude the magical debian/watch file to keep track of
new upstream versions, showing them in the group’s
packages page [pkg-perl packages]. The DEHS relies
for its reports, however, on the ability to check for up-
stream versions periodically, and sometimes too often
ends up reporting failures on some packages’ up-to-
dateness because of network timeouts, so it can not
be taken as the only source to base our work on.

4.2.3 Evaluating and following the repository
as a whole

As part of its natural growth, the pkg-perl group has
not only packaged and adopted hundreds of Perl mod-
ules, but has also developed tools to keep the QA

up to date. The scripts found at the scripts/qa/
directory of our SVN tree [pkg-perl QA sources| are
mostly the work of Gregor Hermann. They have only
recently started running at our server (they were orig-
inally run by their author, who sent the reports by
mail), and so far they are quite simple — But this
is an area where improvement and new ideas should
start flowing in soon.

The pkg-perl QA pages [pkg-perl QA] currently
cover four areas:

build logs Periodically, all of our packages are re-
built, to ensure they do not get broken due to
changes in their dependencies. The full build
logs, sorted by build result (success/failure) are
available in the qa/buildlogs directory.

maintainers In Debian, a package can be orphaned,
adopted, or sometimes even hijacked. When our
group adopts a package, we must change the
Maintainer and Uploaders fields prior to an
upload. Our internal group convention (different
groups do this in somewhat different fashions)
mandates that the Maintainer should be set to
the pkg-perl group, and the Uploaders should
be the list of people specifically interested in this
package’s well being'!'. This script lists the mod-
ules for which our usual pattern does not hold.

versions Sometimes we fix a bug in our tree, or we
prepare an upload for a new version (even more
often when we take into account the non-Debian
Developer members of the group). This script
keeps track of the packages that still have to be
uploaded — And while at it, tries again to check
for upstream versions, given the problems de-
scribed for the DEHS 4.2.2.

wnpp As stated in the pkg-perl goals 4.2, the pkg-
perl group wants to take care of the problems
regarding requested and orphaned Perl modules.
As we will mention in footnote 12, however, the

L11f a package is adopted by a pkg-perl member who is not
yet a Debian Developer, an official Debian Developer will have
to do all the uploads. In this case, the official developer is not
required to list him/herself in the Uploaders field — This is,
in Debian language, called sponsoring a package.

Requests For Packaging are sometimes unopera-
tive. Sometimes, Perl packages can be orphaned
for months or years before taken on. This script
summarizes the information from WNPP so we
can better tackle it, and reduce the number of
undermaintained or missing Perl modules in De-
bian.

4.3 dh-make-perl

Even if the Debian pkg-perl group, since its very
formation, decided not to package every module on
CPAN, we did want to provide our users with all
the needed tools to quickly and easily integrate non-
supported CPAN modules into the distribution —
We understand Debian users will be more intimate
with the Debian packaging and general system ad-
ministration tools. Even though they can ask for any
given Perl module to be packaged and included!?, we
wanted our users to have the ability to integrate in
their systems any module they require.

Back in October 2000, Paolo Molaro made the first
upload of dh-make-perl. Since then, the package has
been maintained by Ivan Kohler, Marc Brockschmidt
and me. And although it was a completely separate
project, given its goals are quite compatible to the
group’s, since October 2006, the package has been
transferred to be group-maintained by the pkg-perl
group. From the current package [dh-make-perl| de-
scription:

Dh-make-per]l will create the files re-
quired to build a Debian source package out
of a perl package. This works for most sim-
ple packages and is also useful for getting
started with packaging perl modules. Given
a perl package name, it can also automati-
cally download it from CPAN.

12The recommended way for requesting a module to be pack-
aged for Debian is to file a REP (Request For Packaging) bug
on the wnpp (Work Needed and Prospective Packaging) pseudo-
package in our BTS. One of the pkg-perl’s goals, as stated in
section 4.2, is to handle the RFP for Perl modules, but we
have to admit that’s more a statement of intent than anything
else — Many RFPs just end up as unfulfilled requests, time
out and get closed because no developer is willing to package
the package

Dh-make-perl is an ugly script'® that, given a Perl
module (or even its distribution name in CPAN,
which it downloads), prepares a valid Debian pack-
age, taking care to list all the dependencies that
can be inferred from the module’s metadata. Some
work has even been done that would allow using
dh-make-perl to be used to generate unofficial APT
repositories. This is not as easy as it might sound —
generating valid Debian packages requires digging up
quite a bit of information. This consists of:

e The module’s name and version
e A short and a long description

e Which infrastructure does it use for building
(and how to query that infrastructure for the bits
of information for filling this simplified list)

e Which other modules or packages does this one
depend on in order to be used

e Which other modules or packages does this one
depend on in order to be packaged

e Some dependency information regarding the cur-
rent base Perl language and modules installed

This data is pulled from all over — Part of it
comes from the META.yml file, if available, or from
the Makefile.PL (in its different flavors, MakeMaker,
Module: :Build, Module: :Install, from the mod-
ule itself, even from the module’s documenta-
tion. We have to predefine ways of building mod-
ules based on the different infrastructures... In
short,dh-make-perl is an ugly, interesting beast.

5 Conclusion

This article was rather meant to draw a picture of our
work than to reach any given conclusions. As you can
see, we have gone a long way since we started building
our infrastructure around four years ago — We just

131t is so ugly that several of its past and present maintainers
have publicly stated their desire to rewrite it from scratch.
Lack of time (and lack of enough guts to face the beast) has
prevented it from happening... But it will happen!

incorporated some new tools to the process, to make
our work smoother and simpler. There is still a lot
to be done, and one of the things we will most value
is a closer interaction with our upstream authors.

On the other hand, there is much QA work that can
flow from the distributions towards CPAN. We invite
you to work with us with any requests you might have
to better follow and enhance the development.

References

[Debian] The Debian project http://

www.debian.org/

The Debian pkg-perl group
https://alioth.debian.
org/projects/pkg-perl/

YAPC::Europe 2007 (Vi-
enna) http://vienna.
yapceurope.org/

[pkg-perl]

[YAPC::EU]|

Example implementation of
Module::Packaged, by Leon
Brocard http://lists.
debian.org/debian-perl/
2003/11/msg00043. html

CPAN — Comprehen-
sive Perl Archive Network
http://www.cpan.org/

Full list of CPAN modules
http://www.cpan.org/
modules/Olmodules.index.
html

[Brocard]

[CPAN]

[CPAN Modules]

[CPAN Authors] Full list of CPAN authors
http://www.cpan.org/

authors/00whois.html

Updated list of CPAN’s
most recent uploads http:
//www.cpan.org/modules/
Olmodules.mtime.html

[CPAN Recent]

[CPAN.pm]| CPAN.pm http://search.
cpan.org/~andk/CPAN-1.

9102/1ib/CPAN.pm

[CPANPLUS|

[PEAR|

[Gems]

[PCS|

[Cross]

[Linux tracking]

[Szabo]

[Signes|

[Debian-QA]

[Michlmayr]

[Troup]

CPAN++ http:
//cpanplus.dwim.org/

PEAR: PHP Extension and
Application Repository http:
//pear.php.net/

Ruby Gems
//rubygens.org/

http:

The Python Cheese Shop
http://www.python.org/

pypi

Dave Cross: Why Perl
Advocacy Is A Bad Idea
http://dave.org.uk/
talks/advocacy.html

Tracking the Perl ver-
sion provided by the
different distributions
http://www.cpan.org/
ports/index.html#linux

CPAN Modules in Distribu-
tions http://www.szabgab.
com/distributions/

Ricardo Signes on dis-
tributions and ver-
sion numbers http:

//use.perl.org/ rjbs/
journal/331707from=rss

The Quality Assur-
ance team in Debian
http://qa.debian.org/

Tracking inactive main-
tainers, Martin Michlmayr
http://www.cyrius.com/
talks/1sm-2003-mia/

James Troup: De-
bian MIA check http:
//lists.debian.org/
debian-devel-announce/
2003/05/msg00006 . html

[Jaspert]

[pke-perl started]

[pkg-perl SVN]

[pkg-perl packages]

[DEHS]

[pkg-perl QA sources]

[pkg-perl QA]

[dh-make-perl]

Jaspert: Handling of in-
active Debian Accounts
http://lists.debian.org/
debian-devel-announce/
2007/07/msg00004 . html

Debian Perl Group
founding message
http://lists.debian.org/
debian-devel-announce/

2004/
debian-devel-announce-200401/

msg00002.html

pkg-perl SVN repository
http://svn.debian.org/
wsvn/pkg-perl

Packages overview for
Debian Perl Group
http://qa.debian.org/
developer.php?login=
pkg-perl-maintainers@
lists.alioth.debian.org

Debian Watch Health Sta-
tus http://dehs.alioth.
debian.org/

http://svn.debian.org/wsvn/pkg-

perl/scripts/qa/
pkg-perlgroup’
sQAscriptssources

Debian Perl Group QA
scripts ~ http://pkg-perl.

alioth.debian.org/qa/

dh-make-perl package page
http://packages.debian.
org/unstable/devel/
dh-make-perl

